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We introduce two three-field mixed formulations for the Poisson equation and propose finite element methods for their
approximation. Both mixed formulations are obtained by introducing a weak equation for the gradient of the solution by means of
a Lagrange multiplier space. Two efficient numerical schemes are proposed based on using a pair of bases for the gradient of the
solution and the Lagrange multiplier space forming biorthogonal and quasi-biorthogonal systems, respectively. We also establish
an optimal a priori error estimate for both finite element approximations.

1. Introduction

In many practical situations, it is important to compute dual
variables of partial differential equationsmore accurately. For
example, the gradient of the solution is the dual variable in
case of the Poisson equation, whereas the stress or pressure
variable is the dual variable in case of elasticity equation.
Working with the standard finite element approach these
variables should be obtained a posteriori by differentiation,
which will result in a loss of accuracy. In these situations,
a mixed method is often preferred as these variables can be
directly computed using a mixed method.

In this paper, we introduce two mixed finite element
methods for the Poisson equation using biorthogonal or
quasi-biorthogonal systems. Both formulations are obtained
by introducing the gradient of the solution of Poisson equa-
tion as a new unknown and writing an additional variational
equation in terms of a Lagrange multiplier. This gives rise to
two additional vector unknowns: the gradient of the solution
and the Lagrange multiplier. In order to obtain an efficient
numerical scheme, we carefully choose a pair of bases for
the space of the gradient of the solution and the Lagrange
multiplier space in the discrete setting. Choosing the pair
of bases forming a biorthogonal or quasi-biorthogonal sys-
tem for these two spaces, we can eliminate the degrees of
freedom associated with the gradient of the solution and

the Lagrange multiplier and arrive at a positive definite
formulation. The positive definite formulation involves only
the degrees of freedom associated with the solution of the
Poisson equation. Hence a reduced system is obtained, which
is easy to solve. The first formulation is discretized by using
a quasi-biorthogonal system, whereas the second one, which
is a stabilized version of the first one, is discretized using a
biorthogonal system.

There are many mixed finite element methods for the
Poisson equation [1–8]. However, all of them are based on
the two-field formulation of the Poisson equation and hence
are not amenable to the application of the biorthogonal
and quasi-biorthogonal systems. We need a three-field for-
mulation to apply the biorthogonal and quasi-biorthogonal
systems which leads to a symmetric formulation (see [9]
for a three-field formulation in linear elasticity). The use
of biorthogonal and quasi-biorthogonal systems allows an
easy static condensation of the auxiliary variables (gradi-
ent of the solution and Lagrange multiplier) leading to a
reduced linear system. These variables can be recovered
just by inverting a diagonal matrix. Therefore, in this
paper we present three-field formulations of the Poisson
equation to apply the biorthogonal and quasi-biorthogonal
systems.

The structure of the rest of the paper is as follows. In
Section 2, we introduce our three-field formulations and
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show their well-posedness. We propose finite element meth-
ods for both formulations and prove a priori error estimates
in Section 3. Finally, a short conclusion is drawn in Section 4.

2. Two Three-Field Formulations
of the Poisson Equation

In this section we introduce two three-field mixed formu-
lations of the Poisson problem. Let Ω ⊂ R𝑑, 𝑑 ∈ {2, 3},
be a bounded convex domain with polygonal or polyhedral
boundary 𝜕Ω with the outward pointing normal n on 𝜕Ω.
There are many mixed formulations of the Poisson equation

−Δ𝑢 = 𝑓 in Ω (1)

with Dirichlet boundary condition

𝑢 = 0 on 𝜕Ω, (2)

Neumann boundary condition

𝜕𝑢

𝜕n
= 0 on 𝜕Ω, (3)

or a mixture of these two (see [2–6, 8, 10]).
We start with the followingminimization problem for the

Poisson problem:

𝐽 (𝑢) = inf
V∈𝐻1
0
(Ω)

𝐽 (V) , (4)

with

𝐽 (V) =
1

2
∫
Ω

|∇V|
2
𝑑𝑥 − ℓ (V) , (5)

where, for simplicity, we have assumed the Dirichlet bound-
ary condition, 𝑓 ∈ 𝐿

2
(Ω), and

ℓ (V) = ∫
Ω

𝑓V 𝑑𝑥. (6)

Let 𝑉 = 𝐻
1

0
(Ω) and 𝑅 = [𝐿

2
(Ω)]
𝑑, and for two vector-valued

functions 𝛼 : Ω → R𝑑 and 𝛽 : Ω → R𝑑, the Sobolev
inner product on the Sobolev space [𝐻𝑘(Ω)]𝑑 is defined as

⟨𝛼,𝛽⟩
𝑘,Ω

:=

𝑑

∑

𝑖=1

⟨𝛼𝑖, 𝛽𝑖⟩𝑘,Ω
, (7)

where (𝛼)𝑖 = 𝛼𝑖 and (𝛽)𝑖 = 𝛽𝑖 with 𝛼𝑖, 𝛽𝑖 ∈ 𝐻
𝑘
(Ω), for

𝑖 = 1, . . . , 𝑑, and the norm ‖ ⋅ ‖𝑘,Ω is induced from this inner
product, where 𝑘 ∈ N ∪ {0}. Note that ⟨𝛼𝑖, 𝛽𝑖⟩𝑘,Ω is the
standard inner product on the Sobolev space𝐻𝑘(Ω).

Our new formulation is obtained by introducing an aux-
iliary variable 𝜎 = ∇𝑢 such that the minimization problem
(4) is rewritten as the following constrained minimization
problem:

arg min
(𝑢,𝜎)∈[𝑉×𝑅]

𝜎=∇𝑢

(
1

2
‖𝜎‖
2

0,Ω
− ℓ (𝑢)) , (8)

where the natural norm for the product space 𝑉 × 𝑅 is
√‖𝑢‖
2

1,Ω
+ ‖𝜎‖
2

0,Ω
for (𝑢,𝜎) ∈ 𝑉 × 𝑅. We write a weak

variational equation for equation 𝜎 = ∇𝑢 in terms of
the Lagrange multiplier space 𝑅 to obtain the saddle-point
problem of the minimization problem (8). The saddle-point
formulation is to find (𝑢,𝜎,𝜙) ∈ 𝑉 × 𝑅 × 𝑅 such that

𝑎 ((𝑢,𝜎) , (V, 𝜏)) + 𝑏 ((V, 𝜏) ,𝜙) = ℓ (V) , (V, 𝜏) ∈ 𝑉 × 𝑅,

𝑏 ((𝑢,𝜎) ,𝜓) = 0, 𝜓 ∈ 𝑅,

(9)

where

𝑎 ((𝑢,𝜎) , (V, 𝜏)) = ∫
Ω

𝜎 ⋅ 𝜏 𝑑𝑥,

𝑏 ((𝑢,𝜎) ,𝜓) = ∫
Ω

(𝜎 − ∇𝑢) ⋅ 𝜓 𝑑𝑥.

(10)

A similar three-field formulation—called the Hu-Washizu
formulation—is very popular in designing finite element
methods to alleviate locking effect in linear elasticity [11–13].

In order to show that the saddle-point problem (9) has
a unique solution, we want to apply a standard saddle-
point theory [3, 4, 10]. To this end, we need to show the
following three conditions of well-posedness.

(1) The linear form ℓ(⋅), the bilinear forms 𝑎(⋅, ⋅) and
𝑏(⋅, ⋅) are continuous on the spaces on which they are
defined.

(2) Thebilinear form 𝑎(⋅, ⋅) is coercive on the kernel space
𝐾 defined as

𝐾 = {(V, 𝜏) ∈ 𝑉 × 𝑅 : 𝑏 ((V, 𝜏) ,𝜓) = 0, 𝜓 ∈ 𝑅} . (11)

(3) Thebilinear form 𝑏(⋅, ⋅) satisfies the inf-sup condition:

sup
(V,𝜏)∈𝑉×𝑅

𝑏 ((V, 𝜏) ,𝜓)

√‖V‖2
1,Ω

+ ‖𝜏‖
2

0,Ω

≥ 𝛽
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩0,Ω

, 𝜓 ∈ 𝑅 (12)

for a constant 𝛽 > 0.
The linear form ℓ(⋅) and the two bilinear forms 𝑎(⋅, ⋅) and

𝑏(⋅, ⋅) are continuous by the Cauchy-Schwarz inequality. The
coercivity of the bilinear form 𝑎(⋅, ⋅) on the kernel space 𝐾
follows from Poincaré inequality:

𝑎 ((𝑢,𝜎) , (𝑢,𝜎)) = ‖𝜎‖
2

0,Ω
≥
1

2
(‖𝜎‖
2

0,Ω
+ ‖𝑢‖
2

1,Ω
) . (13)

It remains to show that the bilinear form 𝑏(⋅, ⋅) satisfies the
inf-sup condition.

Lemma 1. The bilinear form 𝑏(⋅, ⋅) satisfies the inf-sup condi-
tion; that is,

sup
(V,𝜏)∈𝑉×𝑅

𝑏 ((V, 𝜏) ,𝜙)

√ |V ‖2
1,Ω

+ ‖𝜏‖
2

0,Ω

≥
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩0,Ω

, 𝜙 ∈ 𝑅. (14)
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Proof. Using V = 0 in the expression on the left above, we have

sup
(V,𝜏)∈𝑉×𝑅

𝑏 ((V, 𝜏) ,𝜙)

√ |V ‖2
1,Ω

+ ‖𝜏‖
2

0,Ω

≥ sup
𝜏∈𝑅

∫
Ω
𝜏 ⋅ 𝜙 𝑑𝑥

‖𝜏‖
2

0,Ω

=
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩0,Ω

. (15)

To summarize we have proved the following theorem.

Theorem 2. The saddle-point problem (9) has a unique solu-
tion (𝑢,𝜎,𝜙) ∈ 𝑉 × 𝑅 × 𝑅 and

‖𝑢‖1,Ω + ‖𝜎‖0,Ω +
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩0,Ω

≤ ‖ℓ‖0,Ω. (16)

Themain difficulty in this formulation is that the bilinear
form 𝑎(⋅, ⋅) is not coercive on the whole space 𝑉 × 𝑅. It
is only coercive on the subspace 𝐾 of 𝑉 × 𝑅. One has to
consider this difficulty in developing a finite element method
for this problem. One approach to make the bilinear form
𝑎(⋅, ⋅) coercive on the whole space 𝑉 × 𝑅 is to stabilize it.
There are many approaches to stabilize this formulation (see
[2, 5, 6]). Here we modify the bilinear form 𝑎(⋅, ⋅) to get a
consistent stabilization as proposed in [14] for the Mindlin-
Reissner plate so that it is now coercive on the whole space
𝑉 × 𝑅. This is obtained by adding the term

∫
Ω

(𝜎 − ∇𝑢) ⋅ (𝜏 − ∇V) 𝑑𝑥 (17)

to the bilinear form 𝑎(⋅, ⋅). Thus our problem is to find
(𝑢,𝜎,𝜙) ∈ 𝑉 × 𝑅 × 𝑅 such that

𝐴 ((𝑢,𝜎) , (V, 𝜏)) + 𝐵 ((V, 𝜏) ,𝜙) = ℓ (V) , (V, 𝜏) ∈ 𝑉 × 𝑅,

𝐵 ((𝑢,𝜎) ,𝜓) = 0, 𝜓 ∈ 𝑅,

(18)

where

𝐴 ((𝑢,𝜎) , (V, 𝜏)) = ∫
Ω

𝜎.𝜏 𝑑𝑥

+ ∫
Ω

(𝜎 − ∇𝑢) ⋅ (𝜏 − ∇V) 𝑑𝑥,

𝐵 ((𝑢,𝜎) ,𝜓) = ∫
Ω

(𝜎 − ∇𝑢) ⋅ 𝜓 𝑑𝑥.

(19)

Theorem 3. The saddle-point problems (9) and (18) yield the
same solution.

Proof. By construction the solution to (18) is also the solution
to (9).Moreover, as the second equation of (18) yields𝜎 = ∇𝑢,
we can substitute this into the first equation and set V = 0 to
get 𝜙 = −∇𝑢. This proves that the solution to (18) is also the
solution to (9).

Here the bilinear form 𝐴(⋅, ⋅) is coercive on the whole
space 𝑉 × 𝑅 from the triangle and Poincaré inequalities.

Lemma 4. The bilinear form 𝐴(⋅, ⋅) is coercive on 𝑉 × 𝑅. That
is,

𝐴 ((𝑢,𝜎) , (𝑢,𝜎)) ≥ 𝐶 (‖𝑢‖
2

1,Ω
+ ‖𝜎‖
2

0,Ω
) , (𝑢,𝜎) ∈ 𝑉 × 𝑅.

(20)

Proof. We start with the triangle inequality

‖∇𝑢‖
2

0,Ω
≤ ‖∇𝑢 − 𝜎‖

2

0,Ω
+ ‖𝜎‖
2

0,Ω
. (21)

From Poincaré inequality, there exists a constant 𝐶 > 0 such
that

𝐶‖𝑢‖
2

1,Ω
≤ ‖∇𝑢‖

2

0,Ω
(22)

and hence we have

𝐶‖𝑢‖
2

1,Ω
≤ (‖∇𝑢 − 𝜎‖

2

0,Ω
+ ‖𝜎‖
2

0,Ω
) = 𝐴 ((𝑢,𝜎) , (𝑢,𝜎)) .

(23)

Moreover, the other conditions of well-posedness for this
new saddle-point formulation (18) can also be shown exactly
as for (9).

In the following, we present finite element approxima-
tions for both proposed three-field formulations. In the first
step, we propose a finite element method for the nonstabi-
lized formulation (9), which is based on quasi-biorthogonal
systems. In the second step, we present a finite element
method for the stabilized formulation (18), which is based
on biorthogonal systems. The first method works only for
simplicial elements, whereas the second method works for
meshes of parallelotopes and simplices.

3. Finite Element Approximation
and a Priori Error Estimate

Let Tℎ be a quasi-uniform partition of the domain Ω in
simplices or parallelotopes having the mesh size ℎ. Let 𝑇̂ be
a reference simplex or 𝑑-cube, where the reference simplex is
defined as

𝑇̂ := {x ∈ R
𝑑
: 𝑥𝑖 > 0, 𝑖 = 1, . . . , 𝑑,

𝑑

∑

𝑖=1

𝑥𝑖 < 1} , (24)

and a 𝑑-cube 𝑇̂ := (−1, 1)
𝑑. Note that for 𝑑 = 2 a simplex is a

triangle, and for 𝑑 = 2 it is a tetrahedron. Similarly, a 2-cube
is a square, whereas, 3-cube is a cube.

The finite element space is defined by affinemaps 𝐹𝑇 from
a reference element 𝑇̂ to a physical element 𝑇 ∈ Tℎ. LetQ(𝑇̂)
be the space of bilinear/trilinear polynomials in 𝑇̂ if 𝑇̂ is a
reference square/cube or the space of linear polynomials in
𝑇̂ if 𝑇̂ is a reference simplex. Then the finite element space
based on the mesh Tℎ is defined as the space of continuous
functions whose restrictions to an element 𝑇 are obtained
by maps of bilinear, trilinear, or linear functions from the
reference element; that is,

𝑆ℎ := {Vℎ ∈ 𝐻
1
(Ω) : Vℎ|𝑇

= V̂ℎ ∘ 𝐹
−1

𝑇
, V̂ℎ ∈ Q (𝑇̂) , 𝑇 ∈ Tℎ} ,

𝑉ℎ := 𝑆ℎ ∩ 𝐻
1

0
(Ω) .

(25)
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(See [3, 10, 15]). We start with some abstract assumptions for
two discrete spaces [𝐿ℎ]

𝑑
⊂ 𝑅 and [𝑀ℎ]

𝑑
⊂ 𝑅 to discretize the

gradient of the solution and the Lagrange multiplier spaces,
where 𝐿ℎ and𝑀ℎ both are piecewise polynomial spaces with
respect to themeshTℎ and are both subsets of𝐿

2
(Ω). Explicit

construction of local basis functions for these spaces for the
mixed finite elementmethod (9) is given in Section 3.1 and for
the mixed finite element method (18) is given in Section 3.2.

We assume that 𝐿ℎ and𝑀ℎ satisfy the following assump-
tions (see also [16, 17]).

Assumption 1. (i) dim𝑀ℎ = dim 𝐿ℎ.
(ii)There is a constant 𝛽 > 0 independent of themeshTℎ

such that

󵄩󵄩󵄩󵄩𝜙ℎ
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝛽 sup
𝜇
ℎ
∈𝑀
ℎ
\{0}

∫
Ω
𝜇ℎ𝜙ℎ𝑑𝑥

󵄩󵄩󵄩󵄩𝜇ℎ
󵄩󵄩󵄩󵄩𝐿2(Ω)

, 𝜙ℎ ∈ 𝐿ℎ. (26)

(iii) The space𝑀ℎ has the approximation property:

inf
𝜆
ℎ
∈𝑀
ℎ

󵄩󵄩󵄩󵄩𝜙 − 𝜆ℎ
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶ℎ
󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨𝐻1(Ω)

, 𝜙 ∈ 𝐻
1
(Ω) . (27)

(iv) The space 𝐿ℎ has the approximation property:

inf
𝜙
ℎ
∈𝐿
ℎ

󵄩󵄩󵄩󵄩𝜙 − 𝜙ℎ
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶ℎ
󵄨󵄨󵄨󵄨𝜙
󵄨󵄨󵄨󵄨𝐻1(Ω)

, 𝜙 ∈ 𝐻
1
(Ω) . (28)

Now we define biorthogonality and quasi-biorthogonali-
ty (see [16, 18, 19]).

Definition 5. The pair of bases {𝜇𝑖}1≤𝑖≤𝑛 of 𝑀ℎ and {𝜑𝑖}1≤𝑖≤𝑛

of 𝐿ℎ is called biorthogonal if the resulting Gram matrix G
is diagonal. The pair of bases {𝜇𝑖}1≤𝑖≤𝑛 of 𝑀ℎ and {𝜑𝑖}1≤𝑖≤𝑛

of 𝐿ℎ is called quasi-biorthogonal and the resulting Gram
matrix G is called quasidiagonal if G is of the form

G = [
D1 0

R D2
] or G = [

D1 R
0 D2

] , (29)

where D1 and D2 are diagonal matrices and R is a sparse
rectangular matrix.

We recall that a Gram matrix G of two sets of basis
functions {𝜇𝑖}1≤𝑖≤𝑛 and {𝜑𝑖}1≤𝑖≤𝑛 is the matrix G whose 𝑖𝑗th
entry is

∫
Ω

𝜇𝑖𝜑𝑗𝑑𝑥. (30)

It is worth noting that the quasi-diagonalmatrix is inverted by
inverting two diagonal matrices and scaling the rectangular
matrix.

3.1. Finite Element Approximation for the Nonstabilized For-
mulation (9). We now turn our attention to a finite element
approximation for the nonstabilized formulation (9). This
approximation works only for simplicial meshes and is based
on a quasi-biorthogonal system as in [19]. Let

𝐵ℎ = {𝑏ℎ | 𝑏ℎ|
𝑇

= 𝐶

𝑑+1

∏

𝑖=1

𝜆
𝑇

𝑖
, 𝑇 ∈ Tℎ} (31)

be the space of bubble functions, where 𝐶 is a constant and
{𝜆
𝑇

𝑖
}
𝑑+1

𝑖=1
is the set of barycentric coordinates on 𝑇. Let 𝐿ℎ =

𝑆ℎ⊕𝐵ℎ. Explicit construction of basis functions of 𝐿ℎ and𝑀ℎ
on a reference element is provided below.

The finite element problem is to find (𝑢ℎ,𝜎ℎ,𝜙ℎ) ∈ 𝑉ℎ ×

[𝐿ℎ]
𝑑
× [𝑀ℎ]

𝑑 such that

𝑎 ((𝑢ℎ,𝜎ℎ) , (Vℎ, 𝜏ℎ)) + 𝑏 ((Vℎ, 𝜏ℎ) ,𝜙ℎ) = ℓ (Vℎ) ,

(Vℎ, 𝜏ℎ) ∈ 𝑉ℎ × [𝐿ℎ]
𝑑
,

𝑏 ((𝑢ℎ,𝜎ℎ) ,𝜓ℎ) = 0, 𝜓
ℎ
∈ [𝑀ℎ]

𝑑
.

(32)

We note that the standard finite element space 𝑆ℎ is enriched
with elementwise defined bubble functions to obtain the
space 𝐿ℎ, which is done to obtain the coercivity of the bilinear
form 𝑎(⋅, ⋅) on the kernel space 𝐾ℎ defined as (see Lemma 7)

𝐾ℎ = {(Vℎ, 𝜏ℎ) ∈ 𝑉ℎ × [𝐿ℎ]
𝑑
:

𝑏 ((Vℎ, 𝜏ℎ) ,𝜓ℎ) = 0, 𝜓
ℎ
∈ [𝑀ℎ]

𝑑
} .

(33)

To simplify the numerical analysis of the finite element
problem, we introduce a quasiprojection operator: 𝑄ℎ :

𝐿
2
(Ω) → 𝐿ℎ, which is defined as 𝜓

ℎ

∫
Ω

𝑄ℎV𝜇ℎ𝑑𝑥 = ∫
Ω

V𝜇ℎ𝑑𝑥, V ∈ 𝐿
2
(Ω) , 𝜇ℎ ∈ 𝑀ℎ. (34)

This type of operator was introduced in [9] to obtain the finite
element interpolation of nonsmooth functions satisfying
boundary conditions and is used in [20] in the context of
mortar finite elements.The definition of𝑄ℎ allows us to write
the weak gradient as

𝜎ℎ = 𝑄ℎ (∇𝑢ℎ) , (35)

where operator 𝑄ℎ is applied to the vector ∇𝑢ℎ component-
wise. We see that 𝑄ℎ is well defined due to Assumption 1(i)
and (ii). Furthermore, the restriction of 𝑄ℎ to 𝐿ℎ is the
identity. Hence 𝑄ℎ is a projection onto the space 𝐿ℎ. We
note that 𝑄ℎ is not the orthogonal projection onto 𝐿ℎ but
an oblique projection onto 𝐿ℎ see [21, 22]. The stability and
approximation properties of 𝑄ℎ in 𝐿

2 and 𝐻
1-norm can be

shown as in [16, 23]. In the following, we will use a generic
constant 𝐶, which will take different values at different places
but will be always independent of the mesh size ℎ.

Lemma 6. Under Assumption 1(i)–(iii)

󵄩󵄩󵄩󵄩𝑄ℎV
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶‖V‖𝐿2(Ω), 𝑓𝑜𝑟 V ∈ 𝐿
2
(Ω) ,

󵄨󵄨󵄨󵄨𝑄ℎ𝑤
󵄨󵄨󵄨󵄨𝐻1(Ω)

≤ 𝐶|𝑤|𝐻1(Ω), 𝑓𝑜𝑟 𝑤 ∈ 𝐻
1
(Ω) ,

(36)

and for 0 < 𝑠 ≤ 1 and V ∈ 𝐻1+𝑠(Ω)
󵄩󵄩󵄩󵄩V − 𝑄ℎV

󵄩󵄩󵄩󵄩𝐿2(Ω) ≤ 𝐶ℎ
1+𝑠
|V|𝐻𝑠+1(Ω),

󵄩󵄩󵄩󵄩V − 𝑄ℎV
󵄩󵄩󵄩󵄩𝐻1(Ω)

≤ 𝐶ℎ
𝑠
|V|𝐻𝑠+1(Ω).

(37)
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We need to construct another finite element space𝑀ℎ ⊂
𝐿
2
(Ω) that satisfies Assumption 1(i)–(iii) and also leads to an

efficient numerical scheme. The main goal is to choose the
basis functions for𝑀ℎ and 𝐿ℎ so that the matrix D associated
with the bilinear form ∫

Ω
𝜎ℎ : 𝜓ℎ𝑑𝑥 is easy to invert. To this

end, we consider the algebraic form of the weak equation for
the gradient of the solution, which is given by

−B𝑢⃗ + D𝜎⃗ = 0, (38)

where 𝑢⃗ and 𝜎⃗ are the solution vectors for 𝑢ℎ and 𝜎ℎ and D

is the Gram matrix between the bases of [𝑀ℎ]
𝑑 and [𝐿ℎ]

𝑑.
Hence if the matrix D is diagonal or quasi-diagonal, we can
easily eliminate the degrees of freedom corresponding to 𝜎ℎ
and 𝜙

ℎ
. This then leads to a formulation involving only one

unknown 𝑢ℎ. Statically condensing out variables 𝜎ℎ and 𝜙ℎ
we arrive at the variational formulation of the reduced system
given by (68) (see Section 3.3). Note that the matrix D is the
Gram matrix between the bases of [𝑀ℎ]

𝑑 and [𝐿ℎ]
𝑑.

We cannot use a biorthogonal system in this case as the
stability will be lost (see the Appendix). This motivates our
interest in a quasi-biorthogonal system. We now show the
construction of the local basis functions for𝐿ℎ and𝑀ℎ so that
they form a quasi-biorthogonal system. The construction is
shown on the reference triangle 𝑇̂ = {(𝑥, 𝑦) : 0 ≤ 𝑥, 0 ≤

𝑦, 𝑥+𝑦 ≤ 1} in the two-dimensional case and on the reference
tetrahedron 𝑇̂ = {(𝑥, 𝑦, 𝑧) : 0 ≤ 𝑥, 0 ≤ 𝑦, 0 ≤ 𝑧, 𝑥 +𝑦+ 𝑧 ≤ 1}

in the three-dimensional case.
We now start with the reference triangle in the two-

dimensional case. Let {𝜑1, . . . , 𝜑4} defined as

𝜑1 = 1 − 𝑥 − 𝑦, 𝜑2 = 𝑥, 𝜑3 = 𝑦,

𝜑4 = 27𝑥𝑦 (1 − 𝑥 − 𝑦)

(39)

be the local basis functions of 𝐿ℎ on the reference triangle
associated with three vertices (0, 0), and (1, 0), (0, 1) and one
barycenter (1/3, 1/3). Note that 𝜑4 is the standard bubble
function used, for example, in the minielement for the Stokes
equations [24].

Then if we define the local basis functions {𝜇1, . . . , 𝜇4} of
𝑀ℎ as

𝜇1 =
34

9
− 4𝑥 − 4𝑦 −

140

3
𝑥𝑦 (1 − 𝑥 − 𝑦) ,

𝜇2 = −
2

9
+ 4𝑥 −

140

3
𝑥𝑦 (1 − 𝑥 − 𝑦) ,

𝜇3 = −
2

9
+ 4𝑦 −

140

3
𝑥𝑦 (1 − 𝑥 − 𝑦) ,

𝜇4 = 27𝑥𝑦 (1 − 𝑥 − 𝑦) ,

(40)

the two sets of basis functions {𝜑1, . . . , 𝜑4} and {𝜇1, . . . , 𝜇4}

form a quasi-biorthogonal system on the reference triangle.
These four basis functions {𝜇1, . . . , 𝜇4} of 𝑀ℎ are associated
with three vertices (0, 0), and (1, 0), (0, 1) and the barycenter
(1/3, 1/3) of the reference triangle.

Similarly, on the reference tetrahedron, the local basis
functions {𝜑1, . . . , 𝜑5} of 𝐿ℎ defined as

𝜑1 = 1 − 𝑥 − 𝑦 − 𝑧, 𝜑2 = 𝑥, 𝜑3 = 𝑦,

𝜑4 = 𝑧, 𝜑5 = 256𝑥𝑦𝑧 (1 − 𝑥 − 𝑦 − 𝑧)

(41)

and the local basis functions {𝜇1, . . . , 𝜇5} of𝑀ℎ defined as

𝜇1 =
401

92
− 5𝑥 − 5𝑦 − 5𝑧 −

6930

23
𝑥𝑦𝑧 (1 − 𝑥 − 𝑦 − 𝑧) ,

𝜇2 = −
59

92
+ 5𝑥 −

6930

23
𝑥𝑦𝑧 (1 − 𝑥 − 𝑦 − 𝑧) ,

𝜇3 = −
59

92
+ 5𝑦 −

6930

23
𝑥𝑦𝑧 (1 − 𝑥 − 𝑦 − 𝑧) ,

𝜇4 = −
59

92
+ 5𝑧 −

6930

23
𝑥𝑦𝑧 (1 − 𝑥 − 𝑦 − 𝑧) ,

𝜇5 = 256𝑥𝑦𝑧 (1 − 𝑥 − 𝑦 − 𝑧)

(42)

are quasi-biorthogonal.These five basis functions {𝜑1, . . . , 𝜑5}
of 𝐿ℎ or {𝜇1, . . . , 𝜇5} of 𝑀ℎ are associated with four vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) and the barycenter
(1/4, 1/4, and 1/4) of the reference tetrahedron. Using the
finite element basis functions for 𝐿ℎ, the finite element basis
functions for𝑀ℎ are constructed in such a way that the Gram
matrix on the reference element 𝑇̂ is given by

D
𝑇̂
=

[
[
[
[
[
[
[
[
[

[

1

6
0 0 0

0
1

6
0 0

0 0
1

6
0

3

40

3

40

3

40

81

560

]
]
]
]
]
]
]
]
]

]

(43)

for the two-dimensional case and

D
𝑇̂
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

24
0 0 0 0

0
1

24
0 0 0

0 0
1

24
0 0

0 0 0
1

24
0

4

315

4

315

4

315

4

315

4096

155925

]
]
]
]
]
]
]
]
]
]
]
]
]

]

(44)

for the three-dimensional case. After ordering the degrees
of freedom in 𝜎ℎ and 𝜙ℎ so that the degrees of freedom
associated with the barycenters of elements come after the
degrees of freedom associated with the vertices of elements,
the global Gram matrix D is quasi-diagonal.

Thus in the two-dimensional case, the local basis func-
tions 𝜇1, 𝜇2, and 𝜇3 are associated with the vertices of the
reference triangle, and the function 𝜇4 is associated with
the barycenter of the triangle and defined elementwise. That
means 𝜇4 is supported only on the reference element. The
situation is similar in the three-dimensional case. Hence
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using a proper ordering, the support of a global basis function
𝜑𝑖 of𝐿ℎ is the same as that of the global basis function𝜇𝑖 of𝑀ℎ
for 𝑖 = 1, . . . , 𝑛. However, the global basis functions 𝜇1, . . . , 𝜇𝑛
of𝑀ℎ are not continuous on interelement boundaries.

Now we show that𝑀ℎ satisfies Assumption 1(i)–(iii). As
the first assumption is satisfied by construction, we consider
the second assumption. Let 𝜙ℎ = ∑

𝑛

𝑘=1
𝑎𝑘𝜙𝑘 ∈ 𝑆ℎ and set 𝜇ℎ =

∑
𝑛

𝑘=1
𝑎𝑘𝜇𝑘 ∈ 𝑀ℎ. By using the quasibiorthogonality relation

(1) and the quasiuniformity assumption, we get

∫
Ω

𝜙ℎ𝜇ℎ𝑑x =
𝑛

∑

𝑖,𝑗=1

𝑎𝑖𝑎𝑗 ∫
Ω

𝜙𝑖𝜇𝑗𝑑x

=

𝑛

∑

𝑖=1

𝑎
2

𝑖
𝑐𝑖 ≥ 𝐶

𝑛

∑

𝑖=1

𝑎
2

𝑖
ℎ
𝑑

𝑖
≥ 𝐶

󵄩󵄩󵄩󵄩𝜙ℎ
󵄩󵄩󵄩󵄩

2

0,Ω
,

(45)

where ℎ𝑖 denotes the meshsize at 𝑖th vertex. Taking into
account the fact that ‖𝜙ℎ‖

2

0,Ω
≡ ‖𝜇ℎ‖

2

0,Ω
≡ ∑
𝑛

𝑖=1
𝑎
2

𝑖
ℎ
𝑑

𝑖
, we

find that Assumption 1(ii) is satisfied. Since the sum of the
local basis functions of 𝑀ℎ is one, Assumption 1(iii) can be
proved as in [23, 25]. Assumption 1(iv) follows by standard
arguments.

There are (𝑑 + 2) local basis functions of 𝐿ℎ, where (𝑑 +
1) of them are associated with vertices and one is associated
with the element barycenter. Then the local basis functions
of𝑀ℎ are also divided into two parts: (𝑑 + 2) basis functions
associated with the vertices and 1 basis function associated
with the element. Let 𝜇𝑇 be the local basis function associated
with the element barycenter of 𝑇 ∈ Tℎ for𝑀ℎ. Let 𝑌ℎ be the
space of piecewise constant functions with respect toTℎ, and
𝑃ℎ : 𝐿

2
(Ω) → 𝑌ℎ is defined as

𝑃ℎ𝑤|𝑇 =

∫
𝑇
𝑤𝜇𝑇𝑑𝑥

∫
𝑇
𝜇𝑇𝑑𝑥

. (46)

Then 𝑃ℎ is a projection operator onto 𝑌ℎ. Moreover,

∇Vℎ = 𝑃ℎ𝑄ℎ∇Vℎ, (47)

and this implies that
󵄩󵄩󵄩󵄩∇Vℎ

󵄩󵄩󵄩󵄩0,Ω
=
󵄩󵄩󵄩󵄩𝑃ℎ𝑄ℎ∇Vℎ

󵄩󵄩󵄩󵄩0,Ω
≤
󵄩󵄩󵄩󵄩𝑄ℎ∇Vℎ

󵄩󵄩󵄩󵄩0,Ω
. (48)

This yields the following coercivity result.

Lemma 7. The bilinear form 𝑎(⋅, ⋅) is coercive on the kernel
space 𝐾ℎ. In fact,

𝑎 ((𝑢ℎ,𝜎ℎ) , (𝑢ℎ,𝜎ℎ)) ≥
1

2
(
󵄩󵄩󵄩󵄩𝜎ℎ

󵄩󵄩󵄩󵄩

2

0,Ω
+
󵄩󵄩󵄩󵄩∇𝑢ℎ

󵄩󵄩󵄩󵄩

2

0,Ω
) ,

(𝑢ℎ,𝜎ℎ) ∈ 𝐾ℎ.

(49)

Proof. Since 𝜎ℎ = 𝑄ℎ∇𝑢ℎ on the kernel space 𝐾ℎ, we have

𝑎 ((𝑢ℎ,𝜎ℎ) , (𝑢ℎ,𝜎ℎ))

=
1

2
(
󵄩󵄩󵄩󵄩𝜎ℎ

󵄩󵄩󵄩󵄩

2

0,Ω
+
󵄩󵄩󵄩󵄩𝑄ℎ∇𝑢ℎ

󵄩󵄩󵄩󵄩

2

0,Ω
) .

(50)

The proof follows from the result
󵄩󵄩󵄩󵄩∇𝑢ℎ

󵄩󵄩󵄩󵄩0,Ω
=
󵄩󵄩󵄩󵄩𝑃ℎ𝑄ℎ∇𝑢ℎ

󵄩󵄩󵄩󵄩0,Ω
≤
󵄩󵄩󵄩󵄩𝑄ℎ∇𝑢ℎ

󵄩󵄩󵄩󵄩0,Ω
. (51)

Remark 8. Using a quadrilateral or hexahedral meshes, we
cannot have ∇Vℎ = 𝑃ℎ𝑄ℎ∇Vℎ, and hence the coercivity fails.
One needs to modify the finite element method for these
meshes.

The inf-sup condition follows exactly as in the continuous
setting using Assumption 1(ii).

Lemma 9. There exists a constant 𝛽 > 0 such that

sup
(V
ℎ
,𝜏
ℎ
)∈𝑉
ℎ
×𝑅
ℎ

𝑏 ((Vℎ, 𝜏ℎ) ,𝜙ℎ)

√
󵄩󵄩󵄩󵄩Vℎ

󵄩󵄩󵄩󵄩

2

1,Ω
+
󵄩󵄩󵄩󵄩𝜏ℎ

󵄩󵄩󵄩󵄩

2

0,Ω

≥ 𝛽
󵄩󵄩󵄩󵄩𝜙ℎ

󵄩󵄩󵄩󵄩0,Ω
, 𝜙
ℎ
∈ 𝑅ℎ.

(52)

Proof. The proof follows exactly as in the continuous setting.
We use Vℎ = 0 in the expression

sup
(V
ℎ
,𝜏
ℎ
)∈𝑉
ℎ
×𝑅
ℎ

𝑏 ((Vℎ, 𝜏ℎ) ,𝜙ℎ)

√
󵄩󵄩󵄩󵄩Vℎ

󵄩󵄩󵄩󵄩

2

1,Ω
+
󵄩󵄩󵄩󵄩𝜏ℎ

󵄩󵄩󵄩󵄩

2

0,Ω

(53)

to get

sup
(V
ℎ
,𝜏
ℎ
)∈𝑉
ℎ
×𝑅
ℎ

𝑏 ((Vℎ, 𝜏ℎ) ,𝜙ℎ)

√
󵄩󵄩󵄩󵄩Vℎ

󵄩󵄩󵄩󵄩

2

1,Ω
+
󵄩󵄩󵄩󵄩𝜏ℎ

󵄩󵄩󵄩󵄩

2

0,Ω

≥ sup
𝜏
ℎ
∈𝑅
ℎ

∫
Ω
𝜏ℎ ⋅ 𝜙ℎ𝑑𝑥

󵄩󵄩󵄩󵄩𝜏ℎ
󵄩󵄩󵄩󵄩

2

0,Ω

. (54)

Assumption 1(ii) then yields the final result.

Hence we have the following stability and approximation
result.

Theorem 10. The discrete saddle-point problem (32) has a
unique solution (𝑢ℎ,𝜎ℎ,𝜙ℎ) ∈ 𝑉ℎ × [𝐿ℎ]

𝑑
× [𝑀ℎ]

𝑑, and

󵄩󵄩󵄩󵄩𝑢ℎ
󵄩󵄩󵄩󵄩1,Ω

+
󵄩󵄩󵄩󵄩𝜎ℎ

󵄩󵄩󵄩󵄩0,Ω
+
󵄩󵄩󵄩󵄩𝜙ℎ

󵄩󵄩󵄩󵄩0,Ω
≤ ‖ℓ‖0,Ω. (55)

Moreover, the following estimate holds for the solution (𝑢,𝜎,

𝜙) ∈ 𝑉 × 𝑅 × 𝑅 of (32)

󵄩󵄩󵄩󵄩𝑢 − 𝑢ℎ
󵄩󵄩󵄩󵄩1,Ω

+
󵄩󵄩󵄩󵄩𝜎 − 𝜎ℎ

󵄩󵄩󵄩󵄩0,Ω
+
󵄩󵄩󵄩󵄩𝜙 − 𝜙ℎ

󵄩󵄩󵄩󵄩0,Ω

≤ 𝐶( inf
V
ℎ
∈𝑉
ℎ

󵄩󵄩󵄩󵄩𝑢 − 𝑢ℎ
󵄩󵄩󵄩󵄩1,Ω

+ inf
𝜏
ℎ
∈[𝐿
ℎ
]
𝑑

󵄩󵄩󵄩󵄩𝜎 − 𝜏ℎ
󵄩󵄩󵄩󵄩0,Ω

+ inf
𝜓
ℎ
∈[𝑀
ℎ
]
𝑑

󵄩󵄩󵄩󵄩𝜙 − 𝜓ℎ
󵄩󵄩󵄩󵄩0,Ω

) .

(56)

Owing to Assumption 1(iii)-(iv) the discrete solution
converges optimally to the continuous solution.

3.2. Finite Element Approximation for the Stabilized Formula-
tion (18). After stabilizing formulation (9), the bilinear form
𝐴(⋅, ⋅) (18) is coercive on the whole product space 𝑉 × 𝑅.
Therefore, we can use the standard finite element space 𝑆ℎ
to discretize the gradient of the solution for the saddle-point
problem (18) so that 𝐿ℎ = 𝑆ℎ. Thus our discrete saddle-point
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formulation of (18) is to find (𝑢ℎ,𝜎ℎ,𝜙ℎ) ∈ 𝑉ℎ×[𝐿ℎ]
𝑑
×[𝑀ℎ]

𝑑

so that

𝐴 ((𝑢ℎ,𝜎ℎ) , (Vℎ, 𝜏ℎ)) + 𝐵 ((vℎ, 𝜏ℎ) ,𝜙ℎ) = ℓ (Vℎ) ,

(Vℎ, 𝜏ℎ) ∈ 𝑉ℎ × [𝐿ℎ]
𝑑
,

𝐵 ((𝑢ℎ,𝜎ℎ) ,𝜓ℎ) = 0, 𝜓
ℎ
∈ [𝑀ℎ]

𝑑
.

(57)

We can now verify the three conditions of well-posedness for
the discrete saddle point problem. The continuity of 𝐴(⋅, ⋅),
𝐵(⋅, ⋅), and ℓ(⋅) follows as in the continuous setting, and
coercivity is immediate from Lemma 4 as𝑉ℎ ×[𝐿ℎ]

𝑑
⊂ 𝑉×𝑅.

Explicit construction of basis functions of𝑀ℎ on a reference
element will be given below.

Assumption 1(ii) guarantees that the bilinear form 𝑏(⋅, ⋅)

satisfies the inf-sup condition as in the case of the previous
finite element method.

We have thus proved the following theorem from the
standard theory of saddle-point problem (see [4]).

Theorem 11. The discrete saddle-point problem (57) has a
unique solution (𝑢ℎ,𝜎ℎ,𝜙ℎ) ∈ 𝑉ℎ × [𝐿ℎ]

𝑑
× [𝑀ℎ]

𝑑 and
󵄩󵄩󵄩󵄩𝑢ℎ

󵄩󵄩󵄩󵄩1,Ω
+
󵄩󵄩󵄩󵄩𝜎ℎ

󵄩󵄩󵄩󵄩0,Ω
+
󵄩󵄩󵄩󵄩𝜙ℎ

󵄩󵄩󵄩󵄩0,Ω
≤ ‖ℓ‖0,Ω. (58)

Moreover, the following estimate holds for the solution (𝑢,𝜎,

𝜙) ∈ 𝑉 × 𝑅 × 𝑅 of (9)
󵄩󵄩󵄩󵄩𝑢 − 𝑢ℎ

󵄩󵄩󵄩󵄩1,Ω
+
󵄩󵄩󵄩󵄩𝜎 − 𝜎ℎ

󵄩󵄩󵄩󵄩0,Ω
+
󵄩󵄩󵄩󵄩𝜙 − 𝜙ℎ

󵄩󵄩󵄩󵄩0,Ω

≤ 𝐶( inf
V
ℎ
∈𝑉
ℎ

󵄩󵄩󵄩󵄩𝑢 − 𝑢ℎ
󵄩󵄩󵄩󵄩1,Ω

+ inf
𝜏
ℎ
∈[𝐿
ℎ
]
𝑑

󵄩󵄩󵄩󵄩𝜎 − 𝜏ℎ
󵄩󵄩󵄩󵄩0,Ω

+ inf
𝜓
ℎ
∈[𝑀
ℎ
]
𝑑

󵄩󵄩󵄩󵄩𝜙 − 𝜓ℎ
󵄩󵄩󵄩󵄩0,Ω

) .

(59)

The optimal convergence of the discrete solution is then
guaranteed by the standard approximation property of𝑉ℎ and
𝐿ℎ and Assumption 1(iii).

In the following, we give these basis functions for lin-
ear simplicial finite elements in two and three dimensions
[18]. The parallelotope case is handled by using the tensor
product construction of the one-dimensional basis functions
presented in [20, 26]. These basis functions are very useful in
the mortar finite element method and extensively studied in
one- and two-dimensional cases [16, 23, 26].

Note that we have imposed the condition dim𝑀ℎ =

dim 𝐿ℎ to get that our Grammatrix is a square matrix.There-
fore, the local basis functions for linear/bilinear/trilinear
finite spaces are associated with the vertices of triangles,
tetrahedra, quadrilaterals, and hexahedra. For example, for
the reference triangle 𝑇̂ := {(𝑥, 𝑦) : 0 < 𝑥, 0 < 𝑦, 𝑥 + 𝑦 < 1},
we have

𝜇1 := 3 − 4𝑥 − 4𝑦, 𝜇2 := 4𝑥 − 1,

𝜇3 := 4𝑦 − 1,

(60)

where the basis functions 𝜇1, 𝜇2 and 𝜇3 are associated with
three vertices (0, 0), (1, 0), and (0, 1) of the reference triangle.

For the reference tetrahedron 𝑇̂ := {(𝑥, 𝑦, 𝑧) : 0 < 𝑥, 0 <

𝑦, 0 < 𝑧, 𝑥 + 𝑦 + 𝑧 < 1}, we have

𝜇1 := 4 − 5𝑥 − 5𝑦 − 5𝑧, 𝜇2 := 5𝑥 − 1,

𝜇3 := 5𝑦 − 1, 𝜇4 := 5𝑧 − 1,

(61)

where the basis functions 𝜇1, 𝜇2, 𝜇3, and 𝜇4, associated with
four vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) of the
reference tetrahedron (see also [17, 18]). Note that the basis
functions are constructed in such a way that the biorthogo-
nality condition is satisfied on the reference element.

The global basis functions for the test space are con-
structed by gluing the local basis functions together following
exactly the same procedure of constructing global finite
element basis functions from the local ones. These global
basis functions then satisfy the condition of biorthogonality
with global finite element basis functions of 𝑆ℎ. These basis
functions also satisfy Assumption 1(i)–(iv) (see [17, 18]).

3.3. Static Condensation. Here we want to eliminate 𝜎ℎ and
Lagrange multiplier 𝜙

ℎ
from the saddle-point problem (57).

We make use of the operator 𝑄ℎ defined previously. Using
the biorthogonality relation between the basis functions of 𝐿ℎ
and 𝑀ℎ, the action of operator 𝑄ℎ on a function V ∈ 𝐿

2
(Ω)

can be written as

𝑄ℎV =
𝑛

∑

𝑖=1

∫
Ω
𝜇𝑖V 𝑑𝑥

𝑐𝑖

𝜑𝑖, (62)

which tells that the operator𝑄ℎ is local in the sense to be given
below (see also [27]).

Using the property of operator 𝑄ℎ, we can eliminate the
degrees of freedom corresponding to 𝜎ℎ and 𝜙ℎ so that our
problem is to find 𝑢ℎ ∈ 𝑆ℎ such that

𝐽 (𝑢ℎ) = min
V
ℎ
∈𝑉
ℎ

𝐽 (Vℎ) , (63)

where

𝐽 (Vℎ) =
󵄩󵄩󵄩󵄩∇ (𝑄ℎ (∇Vℎ))

󵄩󵄩󵄩󵄩

2

0,Ω
− 2ℓ (Vℎ) (64)

for the nonstabilized formulation (9) and

𝐽 (Vℎ) =
󵄩󵄩󵄩󵄩∇ (𝑄ℎ (∇Vℎ))

󵄩󵄩󵄩󵄩

2

0,Ω

+
󵄩󵄩󵄩󵄩𝑄ℎ (∇Vℎ) − ∇Vℎ

󵄩󵄩󵄩󵄩

2

0,Ω
− 2ℓ (Vℎ)

(65)

for the stabilized formulation (18).
Let the bilinear form 𝐴(⋅, ⋅) be defined as

𝐴 (𝑢ℎ, Vℎ) = ∫
Ω

𝜎ℎ : 𝜏ℎ𝑑𝑥 (66)

for the non-stabilized formulation (9) and

𝐴 (𝑢ℎ, Vℎ) = ∫
Ω

𝜎ℎ : 𝜏ℎ𝑑𝑥

+ ∫
Ω

(𝜎ℎ − ∇𝑢ℎ) ⋅ (𝜏ℎ − ∇Vℎ) 𝑑𝑥

(67)
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for the stabilized formulation (18) with 𝜎ℎ = 𝑄ℎ(∇𝑢ℎ)

and 𝜏ℎ = 𝑄ℎ(∇Vℎ). Due to the biorthogonality or quasi-
biorthogonality condition, the action of 𝑄ℎ is computed by
inverting a diagonal matrix.

Since the bilinear form𝐴(⋅, ⋅) is symmetric, theminimiza-
tion problem (63) is equivalent to the variational problem of
finding 𝑢ℎ ∈ 𝑆ℎ such that [3, 15]

𝐴 (𝑢ℎ, Vℎ) = ℓ (Vℎ) , Vℎ ∈ 𝑉ℎ. (68)

The coercivity of𝐴(⋅, ⋅) and the stability result of Lemma 9
immediately yield the coercivity of the bilinear form𝐴(⋅, ⋅) on
the space 𝑉ℎ with the norm √‖ 𝑢ℎ‖

2

0,Ω
+ ‖∇𝑄ℎ(∇𝑢ℎ)‖

2

0,Ω
for

𝑢ℎ ∈ 𝑉ℎ. That is,

𝐴 (𝑢ℎ, 𝑢ℎ) ≥ 𝐶 (
󵄩󵄩󵄩󵄩𝑢ℎ

󵄩󵄩󵄩󵄩

2

0,Ω
+
󵄩󵄩󵄩󵄩∇𝑄ℎ (∇𝑢ℎ)

󵄩󵄩󵄩󵄩

2

0,Ω
) , 𝑢ℎ ∈ 𝑉ℎ.

(69)

4. Conclusion

We have considered two three-field formulations of Pois-
son problem and shown the well-posedness of them. We
have proposed efficient finite element schemes for both of
these formulations: one for the stabilized three-field for-
mulation based on biorthogonal systems and the other for
the non-stabilized three-field formulation based on quasi-
biorthogonal systems. Optimal a priori error estimates are
proved for both approaches, and a reduced discrete problem
is presented.

Appendix

If we want to enrich the finite element space with the
bubble function to attain stability, it is not possible to use a
biorthogonal system. We consider the local basis functions
of 𝐿ℎ for the reference triangle 𝑇̂ = {(𝑥, 𝑦) : 0 ≤ 𝑥, 0 ≤

𝑦, 𝑥+𝑦 ≤ 1}. Let {𝜑1, . . . , 𝜑4} be defined as in (39).Then using
the biorthogonal relation for the four local basis functions
{𝜇1, . . . , 𝜇4} of 𝑀ℎ with the four basis functions {𝜑1, . . . , 𝜑4}
of 𝐿ℎ for the triangle and∑

3

𝑖=1
𝜑𝑖 = 1 on 𝑇̂, 𝜇4 should satisfy

∫
𝑇̂

𝜇4(

3

∑

𝑖=1

𝜑𝑖)𝑑𝑥 = ∫
𝑇̂

𝜇4 𝑑𝑥 = 0 (A.1)

since it is associated with the barycenter of the triangle. This
leads to instability in the formulation as we suggest that the
function 𝜇4 should have nonzero integral over 𝑇̂ (see (46)).
This explains why we cannot use a biorthogonal system. We
have a similar issue in the three-dimensional case as∑4

𝑖=1
𝜑𝑖 =

1, resulting in

∫
𝑇̂

𝜇5 𝑑𝑥 = 0 (A.2)

if we impose biorthogonality.
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